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NASA TT F-11,694

CHARACTERISTICS METHOD FOR COMPUTING TWO-DIMENSIONAL
EQUILIBRIUM AND PERFECT GAS VORTEX FLOWS

Yu. N. D'yakonov, L. V. Pchelkina and |. D. Sandomirskaya

ABSTRACT. After briefly discussing the merits of the nets
and characteristics methods for computing supersonic flow
regions, the authors propose and describe a possible scheme
for using the characteristics method for computing a steady,
two-dimensional vortex flow of a perfect gas, and particu-
larly of an equilibrium gas flow at M. = 6 past blunt
bodies. The scheme is so designed as to be suitable for
computerized solution with or without taking equilibrium
physical-chemical reactions into consideration. The results
of several computerized solutions are presented graphically.
Analysis of results reveals quantitative and qualitative
differences in gas flow patterns in vortex layers for plane
and axisymmetric flows past blunted bodies.

Aircraft designed for operation at high supersonic speeds generally have /206]
blunted aerodynamic form. As a supersonic gas stream flows around a body with
blunted bow, a receding shock wave develops in front of the body, and the flow
in the shock layer is mixed in nature (Figure 1): near the bow portion, there is
an area of subsonic velocities ABCD, closed by sonic line CD; further, an area
of supersonic flow arises. Limiting characteristic DE (or two limiting char-
acteristics of different sets) sets off the minimum area of influence.
Calculation of this type of flow generally includes two stages: calculation of
the subsonic and transonic area, and calculation of the purely supersonic area,
which is performed using the initial data produced as a result of solution of
the first stage of the problem.

In calculating the supersonic flow area with zero and nonzero angles of
attack, the most widely used methods in recent times have been the nets method
[1-5] and a method based on the idea of characteristics [6-12]. It should be
noted that some methods (particularly the methods of [8, 9, 11]) using char-
~~+avictics relationships in some form, essentially occupy an intermediate

* ' ~nd the characteristics method itself.
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the parameters, the step of the net can be reduced with respect to certain /207
variables or, on the other hand, increased in some portion of the shock layer,
etc.

Still, it should be considered that the flow about a blunt body has a
complex, nonanalytic nature with large gradients of the gas parameters. The
characteristic HL (see Figure 1) beginning at the point of contact between the
blunted tip and the straight line sector of the contour, divides the supersonic
area into two parts: the area located to the right of this characteristic is an
area of influence of the straight line surface, while area CDHL is the portion
of the supersonic flow area influenced by the blunt tip. Since two essentially
different solutions are "stuck together' along characteristic HL, the first
derivatives of the flow parameters are discontinuous across the characteristic,
and the gas dynamic functions are represented by broken curves. As this
characteristic is reflected from the head wave, two other lines of weak discon-
tinuity appear: the reflected characteristic LM, and the flow line LN. Char-
acteristic LM is in turn reflected from the wall, etc.
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Figure 1. Picture of Flow During Supersonic Flow
About a Blunted Body

Also, singularities may occur in the shock layer, related to the presence
of a thin vortex layer near the surface of the body, the formation of limit /208
lines, hanging shock waves, etc.

Investigation of this type of singularity is more naturally and conveni-
ently performed using the characteristics method.



In this work, we analyze one possible scheme for using the characteristics
method for the calculation of stable, two-dimensional vortex flows. Since the
results from calculations of the flow about blunted bodies by ideal gases,
particularly equilibrium gases (at Mach numbers M. = 6) are of considerable
interest, the characteristics method scheme was selected such that the corre-
sponging digital computer program is universal, i.e. can be used to calculate
flows either with or without consideration of equilibrium physical and chemical
reactions. Certain results of the calculations of flow about blunted flat and
axisymmetrical bodies by a supersonic flow of an ideal (¥ = 1.4) and equilibrium
gas (air) are presented. Some of the data presented were produced using the
nets method, as used in [4]. An analysis is presented of the results of
calculation, and they are compared with certain conclusions from the theory of
hypersonic flows.

§1. Calculation Method

Let us write a system of gas dynamics equations for a stable flow of an
inviscid and non-heat conducting gas considering the equilibrium physical-
chemical reactions in the following form [4]:

p(w, v) w=— grad p,
(@, gradinp) = (w, ngradlnp),

div (@) = 0,
% (p, )= ‘dlnp) _. e
P pr= dlng /s P is a known function.

In the particular case ¥ = v = const, we produce a system of equations
corresponding to the flow of an ideal gas.

In order to approximate the effective isentropy index ¥ and other equi-
librium thermodynamic functions, let us use a method suggested in [4].

The differential equations of the characteristics and relationships based
on them can be represented in the following form:

i . sinOsinp
SINPECOS | 1 sin dy = 0,
dd & »p p—lysin(():p«)
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along the characteristics of the first and second sets; and /209

—— = 0,
dx ‘g

i
wdo -+ <2 =0,
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along the flow lines;
kK =k (p,p) is a known function;

where j = 0 for a two-dimensional flow and j = 1 for an axisymmetrical flow. In
the above relationships, we have used the usual symbols: x,y are cylindrical or
Cartesian coordinates; ¥ = arcsin 1/M is the Mach angle; w is the modulus of the
velocity vector; ¢ is the inclination angle of the velocity vector to the x
axis.

Let us introduce the new desired functions
' 0
C=c%p,@=ﬂg7;,

similar to those suggested by Ehlers [12].

In order that the characteristics method might allow us to use a single
program to calculate flows with or without consideration of equilibrium physical
and chemical reactions, let us select the following functions as those to be
sought: x, y, 8,, p, #p, w. Now, in consideration of (3), the main system of

equations (2) can be written in the form

AdS, . tdp . Ady : |
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dx (BB

along the characteristics of the first and second sets; and



dy
dx

along the flow line;

K =Kk (p,p) 1s a known function,

where

2
A=8 (1—08D), 3=< 14 >2-—62.

The boundary conditions of the problem are: at the surface of the body
fixed by equation y = ®(x), the condition of zero flow through the surface

v—ud, =0,
and at the shock wave, the primary laws of conservation

o ' g2 o
Poo = Lol = Py T Puliyd
Pol¥noo = PyWnws

‘ 2
. ] w?

LI e wuw

um—uw_*"Fx(v“—.vw) =0. -

where the subscript < relates to the parameters of the unperturbed flow, the
subscript w to the parameters immediately beyond the shock wave; the subscript x
represents differentiation with respect to x; y = F(x) is the equation for the
surface of the shock wave; u, v are projections of velocity vector w on the x
and y axes respectively; wo is the component of the velocity vector perpendicu-

lar to the shock wave surface:
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In the case of flows of an equilibrium gas, we must add the following
dependence to formulas (6):

h=nh(p,p). )

In performing our calculations, in place of the third relationship of (6),
we use the following dependence, calculated in advance for a direct compression
jump: ‘

'_pi‘i'= woo, unTo-g
o f (M, p ) 8)

which was approximated by sectors using second power polynomials with an
accuracy of 0.1-0.5%.

As is shown in [4], dependence (7) can be quite simply and economically
approximated throughout the entire range of pressures and temperatures of
tables [13-15]. Then, the equations on the shock wave can be solved using
system (6)-(7). This eliminates the necessity of fixing dependence (8) in
advance, and makes it possible to calculate flows in which equilibrium physical
and chemical conversions of the gas have an essential role to play in the
oncoming stream.

As we know, the characteristics method includes the solution of the
following basic problems: calculation of an internal point in the field,
located at the intersection of the two characteristics of the different sets;
calculation of a point lying on the surface of the body; calculation of a point
on the shock wave. In order to calculate the values of quantities x, y, §_, p,

p and w at some point ''c¢'" on the basis of their known values at points '"a'" and
'"b," the corresponding differential equations of system (4) are represented in
finite-difference form. The system of equations produced is solved by the
iterations method, all the coefficients in the first iteration being determined
from values of the functions at points "a" and "b" respectively; in subsequent
approximations, the mean values of the coefficients for points "a" and '"c" or
"b" and '"'c¢" are taken. In order to produce good accuracy, it is usually suffi-
cient to make three approximations. Determination of the parameters at the
point of intersection of the flow lines originating at point "c¢'" with the line
on which all gas parameters have already been calculated (calculated character-
istic or line of initial data) is performed using quadratic interpolation with
respect to the corresponding nodal points lying on this line.

All calculations were performed along the characteristics of the second
set. In the process of calculations, strong variations in the locations of the
nodal points on the characteristic can occur. In connection with this, equil-
ibration of points was performed periodically using quadratic interpolation.

Equilibration was generally performed on reflected characteristics of the second

~
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set, corresponding to various discontinuous characteristics of the first set
(for example, characteristic LM -- see Figure 1).

The value of ¥k was calculated by quadratic interpolation with respect to
values K™ Kk(ani: qj) determined from the table, where q is a certain func-

tion of pressure and density (see [4]). The accuracy of the approximation of «
is on the order of 1%. Here, in order to approximate the effective isentropy
index throughout the entire range of parameters, approximately 300 digital
computer memory locations were used in [13-15].

Times required for calculation of the flow around a blunt body by equilib-
rium and ideal gases are practically identical.

The initial data on ray OG (see Figure 1) both in the case of equilibrium
air and in the case of an ideal gas were calculated by the method suggested by
G. F. Telenin [16-18].

The velocities were related to the value of the critical speed of sound a,,

calculated for an ideal gas with constant adiabatic index ¥ = 1.4; the density
was related to the density of the oncoming flow; pressure was related to the
quantity pea2. In calculating flow around blunt bodies both by ideal and by

equilibrium gases, all parameters were related to these quantities.

A1l checks of the solution (similar to those performed in [3-5]) as well as
comparisons with the results of calculations by the nets method [3-5] showed
that the accuracy of the data produced is on the order of 1%.

§2. Results of Calculations, Some Specific Features of the Flow of Equilibrium
and ldeal Gases Around Flat and Axisymmetrical Blunt Bodies

In correspondence with the characteristics method outlined, a program was
composed for a digital computer and calculations of the flow around two-
dimensional (j = 0) and axisymmetrical (j = 1) bodies were calculated using
various forms of blunting of the front portion of the body, for a supersonic
flow of an ideal (¥ = 1.4) or equilibrium gas (air).

The number of nodal points on the characteristics in the second set was
varied from n = 40 to n = 200, depending on the nature of the flow being
studied.

The calculations of the flow of an ideal gas around wedges blunted in the
form of a circle were performed in the range of Mach numbers M. = 4-20 with half
apex angle ¢ = -20°-+20°,

The flow around blunted cones by a stream of an ideal and equilibrium gas
was investigated in the range of Mach numbers M. = 6-<, of half apex angles
B = -30°-+20°, of pressures in the oncoming stream p. = 0.0001-1.0 bar, of
temperatures T. = 200-300°K. The blunting studied had the form of ellipsoids of
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rotation, the ratio of the vertical and horizontal axes varying within limits
1/3 <86 < 3.

Let us analyze some specific features of the flow of the gas around the
two-dimensional and axisymmetrical blunt bodies using the results of calculation
shown on Figures 1-12.

First of all, let us note the relative increase in thickness of the shock
layer in the case of two-dimensional flow.over the corresponding axisymmetrical
gas flow (cf. Figure 1 and the data of [4]).

The distribution of pressure on the surface of the wedge and on the shock
wave is shown on Figure 2. The value x = 0 corresponds to the point of contact
of the cylinder with the wedge, and readings on the x axis are given in units of
the blunting radius. The x axis is always directed parallel to the velocity
vector of the oncoming stream.

As we can see from the data on Figure 2, in the area of the point of
contact, in the downstream direction, a considerable positive pressure gradient
develops. In connection with this, the characteristics of the first set, having
their origin at the wall in the area of the point of contact, have a tendency to
converge. Since the shock layer is rather thick in the case of flow around two-
dimensional bodies, before the discontinuous characteristic HL (Figure 1)
reaches the surface of the head shock wave, the characteristics of the first set
may begin intersecting, leading to the appearance of a limit line and the
formation of a hanging shock wave in the flow. This type of singularity was
observed in calculating flow around a wedge with a cylindrical blunted tip and
various angles ¢ at M. = 4.

With larger M. numbers, the shock layer becomes considerably thinner;
therefore, generally speaking, the intersection of characteristics may not
occur. In particular, where M. = 20, ¢ = 20°, this singularity was not
observed, in contrast to the situation which obtained at M. = 4 (see Figure 2).

The data on Figures 1 and 2 also clearly illustrate the propagation of the
weak perturbation (discontinuity of first derivatives of gas parameter resulting
from discontinuity in curvature of contour at point H where cylinder contacts
wedge) from the surface of the body into the flow, and its reflection from the
head shock wave and from the wall. At point L, the discontinuous characteristic
reaches the shock wave and results in the appearance of a considerable positive
pressure gradient downstream from this point. The reflected characteristic of
the second set arrives at the body surface at point M; when it is reflected from
the shock wave, in correspondence with the conclusions of the theory of hyper-
sonic flows [19], the perturbation changes its sign and becomes considerably
weaker. Point M' on Figures 1 and 2 corresponds to the point of arrival of the
next discontinuous characteristics of the first set at the surface of the head
shock wave. This characteristic MM' is in turn reflected from the shock wave,
etc.

/213



Figures 3-6 show the results of
comparison of the fields of gas
parameters p, 6,, p and the M number

along the characteristics of the
second set in the case of two-
dimensional and axisymmetrical flow.
The coordinate ¢ = (x - xs)/(xw -

- xs), where the subscripts s and w

mean that the point belongs to the
surface of the body or to the shock
wave. Figure 3 also shows the values
of X corresponding to the three

~
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Figure 2. Distribution of

Pressure on Surface of Body and characteristics 1, 2 and 3 of the
on Shock Wave with Flow Around a two-dimensional flow and three char-
Blunt Wedge acteristics 1', 2' and 3' of the

axisymmetrical gas flow.

In the case of a two-dimensional flow, the data on Figures 3-6 clearly
illustrate the nature of the change in gas parameters in each of the areas shown
on Figure 1 and separated from each other by the weak discontinuity surfaces:
the discontinuous characteristic of the first set HL, flow line LN, reflected
discontinuous characteristic MM'. With axisymmetrical flow, the corresponding
discontinuities are considerably weaker and the picture of the field of
parameters is not as clear as with two-dimensional gas flow.

Analysis of the results produced allows us to determine not only the
quantitative, but also the qualitative differences in the nature of the movement
of the gas in the vortex layer in the case of flow around two-dimensional and
axisymmetrical blunt bodies. This difference is as follows.

With axisymmetrical flow, since the flow rate of the high entropy gas

passing through the strong shock wave near the tip of the body is finite, due to
outward flow along the side surface of the cone, a thin layer is formed near the

wall (usually called the vortex or entropy layer) with high transverse gradients

of pressure and velocity. The formation of this layer can be easily seen on /21
Figures 5 and 6. It is interesting that throughout almost the entire shock

layer, the flow lines are directed toward the body (Figure 4), 1i.e. as the

length of the blunted cone increases, the vortex layer becomes ever thinner.

A different picture is observed with flow around a blunted wedge. In the
initial sector of the shock layer, the flow lines are even directed away from
the body (Figure 4); thus, the gas particles which have passed through the
strong shock'wave tend to occupy a relatively greater portion of the shock
layer, and only with rather high values of x do the directions of the velocity
vectors become almost constant, parallel to the generatrix of the wedge. This
means that in the physical coordinates x and y, the thickness of the vortex
layer of gas does not decrease although, if we use the relative coordinate £
introduced above, with increasing x this layer will occupy a smaller fraction of



the shock layer with respect to &, since the absolute size of the shock layer
increases.
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Figure 3. Distribution of Figure 4. Distribution of
Pressure Along Character- 58 Along Characteristics

istics of Seqond Set of Second Set (symbols as

on Figure 3)

Consequently, with flow around a blunted wedge, the vortex layer, in the
sense in which it is usually used for axisymmetrical bodies, is absent, and in
its place at large values of wedge length we find a gas layer of approximately
constant thickness (in physical coordinates x,y), which has passed through the
strong shock wave near the bow portion of the body (for example, the gas layer
arriving at the shock wave from the plane of symmetry y = 0 to point L or
M' -- see Figures 1 and 2).
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The data on Figures 5 and 6 also show that actually the computational
difficulties noted in [3-5] related to the nature of the gas flow in the
entropy layer are of the same order of magnitude both for the nets method and
for the characteristics method.

In the case of flow around a blunted body by an ideal gas, any gas dynamics

parameter in the shock layer depends, generally speaking, on coordinates x,y,
the form of the blunting, the characteristic angle of inclination of generatrix

10



B, the M. number and the ratio of specific heat capacities v. If equilibrium
physical-chemical reactions are taken into consideration, the pressure and
temperature in the oncoming stream must be added to the number of primary
determining parameters, as well as a parameter considering the thermodynamic
properties of the gas being examined (an analog of the adiabatic index 7).
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Figure 5. Distribution of Figure 6. Distribution of
Density Along Characteristics M Numbers Along Char-
of Second Set (symbols as on acteristics of Second Set
Figure 3) (symbols as on Figure 3)

Using the concepts concerning a strong explosion and an unstable analog to
the methods of the theory of hypersonic flows, certain asymptotic relationships
have been produced -- the so-called similarity laws [19], which are quite useful
for the analysis and processing of experimental and calculated data. The
similarity law states that for affine-similar bodies (regardless of the form of
the blunting of the bow) the values of relative pressure on the body surface

P = - - W2 . . .
(ps p-/p w""1'2), relative inclination of the head wave to_the direction of
the oncoming stream § = tan w/7r and relative drag coefficient C*x = Cx/r*

depend, in the case of an ideal gas, on three dimensionless parameters: k = M.T,

n = \/27Cx s (x/d)72 and Y. The quantity w. represents the velocity vector
0

11
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modulus of the unperturbed flow, 7 and 7 [sic -- Tr.] are the relative
thicknesses of the body, w is the angle of inclination of the shock wave to the
x axis, CXO is the drag coefficient of the blunt portion, and d is the diameter

of the blunt portion. In particular, where M. = = for blunt cones, the values
of P, { and Cx will depend only on two parameters: 7 and Y. As relative

thicknesses of the body, we select the values 7 = tan 8 and 7, = sin 8.

Figures 7-12 show some results of investigations in variables of similarity.
for the flow around blunt cones by a stream of an equilibrium and ideal gas.
Two characteristic variants were selected as the primary variants: in the case
of the ideal gas, § = 1, 8 = 10°, M. = = (or 20), ¥ = 1.4; in the case of
equilibrium air, 8§ = 1, § = 10°, M. = 20, p. = 0.01 bar, T. = 250°K. In
performing calculations, all parameters in these variants were fixed with the
exception of one parameter (taken in turn) which was varied over the range of
change indicated above.

Analysis of the data on Figures 7-12 shows that in similarity variables, /220
the curves converge strongly, although the differences do remain noticeable.
In particular, the results produced are quite hopeful in the sense of the
usage of this type of processing of data to determine the distribution of gas
parameters with good accuracy with other forms of bow blunting on the basis
of the results produced without performing additional calculation (curves 5,
7, 8 on Figures 9-12). The correspondence of these curves with various angles
B and numbers M. with fixed values of the remaining parameters is also satis-
factory, but not as good as occurred in the investigation of the influence of
the form of blunting. It should be noted that when the investigations were
performed, the condition of similarity was not maintained in many variants
for all of the dimensionless determining parameters included in the law of

similarity, in particular for the parameter k = M. tan 8, which becomes - /221
important where M, < o,

Thus, the similarity variables in the case of the flow of both an ideal
and an equilibrium gas can be successfully used to produce various gas dynamic
quantities with sufficient accuracy using data already available. Nevertheless,
in order to provide high accuracy over a broad range of parameters, it
is still necessary to accumulate rather voluminous numerical material.

12
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in Similarity Variables for the Case of Flow
of an ldeal and Equilibrium Gas (Air)
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Figure 9. Drag Coefficient of Blunted Cone in Simil-
arity Variables (symbols as on Figure 7)

Physical and chemical processes influence strongly the flow of the gas
around a blunted body. First of all, as was noted earlier in [4], the area of
influence of blunting is reduced significantly. A similar conclusion was
produced theoretically [19] in an analysis of flows with various ratios of
heat capacities ¥. In connection with this, in the area of this influence,
parameters P, { and E; calculated with and without consideration of physical-

chemical reactions differ strongly from each other, as we can see on

Figures 7-12. 1In particular, with equilibrium flow the drag coefficient of a
blunted cone may exceed the drag coefficient of this same cone penetrating

an ideal gas with ¥ = 1.4 by 10% or more (Figures 9 and 12). Comparison of

curves 2, 3 and 4 on Figures 7-9 and 10-12 shows that the influence of pressure

and temperature in the oncoming stream is not too great within the range of /22
change of these parameters which we analyzed, and can be easily considered using
various types of correcting coefficients.

The solutions from the theory of hypersonic flows [19] indicated the
presence of a drag minimum for a blunted cone. According to the theory, the
relative decrease in the drag coefficient may reach 10% in comparison with a
corresponding sharp cone.

The results of calculations shown on Figures 9 and 12 confirm this
conclusion of the theory qualitatively: with hypersonic flow around a blunted
cone, the drag coefficient actually does have a minimum -- see curves 5, 7 and
8 on Figure 12.

15
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Moo Cx, T [°K] M oo Cx, ) \
1—25 0,924 250 5—20 0,905 1
2—20 0,926 200 7—o0 0,420 s
3-.20 . 0,926 300 8—co 0563 05
490 0,926 250

6—15 0,917 250

-9—10 0,933 250

10—6 0902 250

As the blunting is increased (corresponding to an increase in CxO) and

angle B is decreased (curves 6 and 8 on Figure 9 and curves 5, 7 and 8 on
Figure 12) this singularity appears more clearly; the minimum appears at

B < 10°.

Consideration of equilibrium physical-chemical reactions results in a

sharp decrease in the area of influence of the blunting, and the drag minimum
is not observed.
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